

1 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GOOGLE PLAY BILLING (IAP)
MANUAL

Contents

Introduction .. 3

The Asynchronous IAP Event .. 4

Extension Functions .. 5

GPBilling_Init ... 6

GPBilling_ConnectToStore .. 7

GPBilling_IsStoreConnected.. 9

GPBilling_AddProduct ... 10

GPBilling_AddSubscription .. 12

GPBilling_QueryProducts .. 14

GPBilling_QuerySubscriptions ... 17

GPBilling_QueryPurchases .. 20

GPBilling_PurchaseProduct ... 24

GPBilling_PurchaseSubscription ... 27

GPBilling_AcknowledgePurchase .. 31

GPBilling_ConsumeProduct .. 33

GPBilling_Sku_GetDescription .. 35

GPBilling_Sku_GetFreeTrialPeriod .. 36

GPBilling_Sku_GetIconUrl ... 37

GPBilling_Sku_GetIntroductoryPrice .. 38

GPBilling_Sku_GetIntroductoryPriceAmountMicros ... 39

GPBilling_Sku_GetIntroductoryPriceCycles... 40

GPBilling_Sku_GetIntroductoryPricePeriod .. 41

GPBilling_Sku_GetOriginalJson ... 42

GPBilling_Sku_GetOriginalPrice .. 43

GPBilling_Sku_GetOriginalPriceAmountMicros .. 44

GPBilling_Sku_GetPrice... 45

2 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Sku_GetPriceAmountMicros ... 46

GPBilling_Sku_GetPriceCurrencyCode .. 47

GPBilling_Sku_GetSubscriptionPeriod .. 48

GPBilling_Sku_GetTitle ... 49

GPBilling_Sku_GetType ... 50

GPBilling_Purchase_GetState ... 51

GPBilling_Purchase_GetSignature .. 52

GPBilling_Purchase_VerifySignature ... 53

GPBilling_Purchase_GetOriginalJson .. 54

3 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

Introduction

This manual is designed for you to use as a reference to the different Google Play IAP (In App Purchase)

functions for Android, and as such does not contain tutorials on how to set up the API in your games.

If you wish information on setting up, general use, etc., then please see the following YoYo Games

Knowledge Base article:

• Android: Google Play Billing (IAPs)

We also recommend that before doing anything with this extension, you take a moment to look over

the official Google Play Billing API documentation, as it will familiarise you with many of the terms and

concepts required to use the extension correctly, and many of the functions in the extension are

practically 1:1 mappings of the methods described there:

• Google Developer Docs: Billing Overview

https://help.yoyogames.com/hc/en-us/articles/360031457831
https://help.yoyogames.com/hc/en-us/articles/360031457831
https://developer.android.com/google/play/billing/billing_overview

4 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

The Asynchronous IAP Event

When using the Google Play Billing extension in your projects, you will be calling different functions

that will trigger “callbacks” from the Google Billing API. What this means is that certain functions will

be run but won’t return a result until sometime in the future, which could be the next step or it could

be a few seconds later.

This result, when it comes, is called the “callback” and is the Google Billing API responding to

something you’ve done. This callback is dealt with in the Asynchronous IAP Event.

This event will always have a DS map in the GML variable async_load, and this map can be parsed to

get the required information. Each function will generate different callbacks, but they will all have one

key in common which used to identify the type of callback that is being received:

• “id” – This is the event ID key and it will hold a CONSTANT with the ID of the event that has

been triggered. For example, if it’s an event to tell you a product has been purchased, then

the constant will be gpb_receipt. See the different functions for details about the constant

returned for each.

The rest of the key/value pairs in the map will depend on the function that triggered the Async Event

and the ID of the event, and you should check the individual functions listed in the rest of this manual

for exact details.

5 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

Extension Functions

The rest of this manual contains a reference guide to all the functions used by the Google Billing

Extension, along with any constants that they may use or return and examples of code that use them.

Some of the examples are Extended Examples that also show code from callbacks in the Asynchronous

IAP Event.

It is worth noting that in some cases the function description will mention the use of a private server

to verify purchases. This is not required (although is still recommended) for regular product IAPs,

however Google highly recommend it for subscription IAPs. Setting up subscriptions and the server to

deal with them is outside of the scope of this documentation and, instead, we refer you to the Google

docs here:

• Google Developer Docs: Add Subscription-Specific Features

• Google Developer Docs: Verify A Purchase On A Server

NOTE: At various times the Google Billing documentation (and hence, this manual) talk about

“Product IDs” and “SKUs”. These are two terms for the same thing and refer to the unique name

you gave to your different IAP products on your Google Play Console.

The general workflow for using this extension is as follows:

• At the start of the game, attempt to connect to the Play Store

• If connection fails, disable the possibility for purchases in your game UI (and set an alarm or

something to test again at intervals)

• If connection succeeds, add the different products to the internal products list

• After adding the products but before permitting purchases, query existing purchases and if

there are any consumable purchases or unacknowledged non-consumable/subscription

purchases outstanding, then consume or acknowledge them.

• Permit the game to run as normal and let the user purchase/consume products as required,

checking for connection to the store at all times to prevent erroneous purchases

Note that all products (except subscriptions) are considered consumable, so should you wish to have

a non-consumable product – for example, a “no ads” product – then you simply do not call the

GPBilling_ConsumeProduct() function on that item. However, non-consumable products still need

to be acknowledged within 2 days of purchase, otherwise the purchase will be refunded. This would

be done using the function GPBilling_AcknowledgePurchase().

https://developer.android.com/google/play/billing/billing_subscriptions
https://developer.android.com/google/play/billing/billing_library_overview#Verify-purchase

6 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Init

Description

This function will initialise the Google Play Billing API and is called automatically by the

extension. As such, you should not be writing it in your game code, as it is not required.

Syntax

GPBilling_Init();

Returns

 N/A

Example

N/A

7 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_ConnectToStore

Description

This function will attempt to connect the Google Play Billing API with the Play store. When you

call this function, it will return one the constants listed below to inform you of the status of

the connection attempt. This function must be called before calling any other IAP functions

and the return status should be gpb_no_error. This does not, however, mean that the Store

is available, only that the connection attempt has been successful. Before you can successfully

define, query or purchase any products, you must ensure that the connection is valid.

To check the availability of the Play Store, the function will also trigger one of two callbacks in

the Asynchronous IAP Event (when the initial returned status is gpb_no_error). In this event,

the async_load DS map will have the following constants returned for the “id” key:

Constant Actual
Value

Description

gpb_store_connect 2005 The API has connected to the
Google Play store.

gpb_store_connect_failed 2006 The API has failed to connect
to the Google Play store.

Syntax

GPBilling_ConnectToStore();

Returns

 Constant

Constant Actual
Value

Description

gpb_error_unknown -1 There was an unknown error
preventing the Billing API
from creating a connection
request.

gpb_no_error 0 The Billing API has created a
connection request correctly.

Cont…/

8 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_ConnectToStore() Cont…/

Extended Example

In this extended example, we first send an API request to connect to the store in some event.

This would normally be done in the Create Event of a dedicated controller object that is one

of the first things created in your game:

global.IAP_Enabled = false;
var _init = GPBilling_ConnectToStore();

if _init == gpb_error_unknown

 {

 show_debug_message(“ERROR - Billing API Has Not Connected!”);

 alarm[0] = room_speed * 10;

 }

Note that if the connection request has failed, then we can – for example - call an alarm, where

we can call this same code again to test for store connection periodically.

Assuming the API has correctly requested a store connection, it will trigger an Asynchronous

IAP Event where you can check to see if the API has successfully connected to the Google Play

store or not:

var _eventId = async_load[? "id"];
switch (_eventId)

 {

 case gpb_store_connect:

 // Store has connected so here you would generally add the products

 global.IAP_Enabled = true;

 GPBilling_AddProduct(global.IAP_PurchaseID[0]);

 GPBilling_AddSubscription(global.IAP_PurchaseID[1]);
 // Etc…

 break;

 case gpb_store_connect_failed:

 // Store has failed to connect, so try again periodically

 alarm[0] = room_speed * 10;

 break;

 }

In the above example, if the store connection fails, you’ll see we call an alarm event, setting it

to count down 10 seconds. In this event we can then try to initialise the store once more using

the same code that we have in the Create Event, shown above.

9 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_IsStoreConnected

Description

This function will check to see if the Google Play Billing API currently has a connection to the

Google Play store. The function will return true if it is and false if it is not. Note that if there

is no connection, you should not permit any further Google Play Billing API function calls and

you could also disable or hide any purchase options for the user in your game UI until

connection has been re-established.

In general, you should always call this function and check connectivity before doing any

interactions with the Billing API.

Syntax

GPBilling_IsStoreConnected();

Returns

 Boolean

Example

if mouse_check_button_pressed(mb_left) &&
 {

 if instance_position(mouse_x, mouse_y, id)

 {

 if GPBilling_IsStoreConnected() && global.IAP_Enabled == true

 {

 GPBilling_PurchaseProduct(global.IAP_PurchaseID[0]);

 }
 else

 {

 global.IAP_Enabled == false;

 alarm[0] = room_speed * 10;

 }

 }

 }

10 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_AddProduct

Description

This function can be used to add a consumable product to the internal product list for

purchase. You supply the Product ID (as a string, the same as the product ID on the Google

Play Console for the game), and the function will return one of the constants listed below.

For subscription products, you should be using the function GPBilling_AddSubscription().

Note, there is no difference between a consumable and a non-consumable product as far as

the API is concerned. So, for non-consumable IAPs – like a “no ads” IAP, for example – you

simply don’t call the GPBilling_ConsumeProduct() function on it. However, non-

consumables should still be acknowledged using the GPBilling_AcknowledgePurchase()

function when purchased.

Syntax

GPBilling_AddProduct(product_id);

Argument Description Data Type

product_id The product ID (SKU) of
the IAP product being
added.

String

Returns

 Constant

Constant Actual
Value

Description

gpb_error_unknown -1 This error indicates that the
product being added is not
unique (ie: the product ID
has already been added to the
internal product list).

gpb_no_error 0 The product was successfully
added to the internal product
list.

Cont…/

11 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_AddProduct Cont…/

Example

The following code is being called from the Asynchronous IAP Event when it has been

triggered by the function GPBilling_ConnectToStore().

var _eventId = async_load[? "id"];

switch (_eventId)
 {

 case gpb_store_connect:

 GPBilling_AddProduct(global.IAP_PurchaseID[0]);

 GPBilling_AddSubscription(global.IAP_PurchaseID[1]);

 GPBilling_QueryProducts();

 break;

 }

12 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_AddSubscription

Description

This function can be used to add a subscription product to the internal product list for

purchase. You supply the Product ID (as a string, the same as the product ID on the Google

Play console for the game), and the function will return one of the constants listed below.

For consumable products, you should be using the function GPBilling_AddProduct().

Syntax

GPBilling_AddSubscription(product_id);

Argument Description Data Type

product_id The product ID (SKU) of
the IAP product being
added.

String

Returns

 Constant

Constant Actual
Value

Description

gpb_error_unknown -1 This error indicates that the
product being added is not
unique (i.e.: the product ID
has already been added to the
internal product list).

gpb_no_error 0 The product was successfully
added to the internal product
list.

Cont…/

13 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_AddSubscription Cont…/

Example

The following code is being called from the Asynchronous IAP Event when it has been

triggered by the function GPBilling_ConnectToStore().

var _eventId = async_load[? “id”];

switch (_eventId)
 {

 case gpb_store_connect:

 GPBilling_AddProduct(global.IAP_PurchaseID[0]);

 GPBilling_AddSubscription(global.IAP_PurchaseID[1]);

 GPBilling_QueryProducts();

 break;

 }

14 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_QueryProducts

Description

This function can be used to query the state of any consumable products (for subscriptions,

please use the function GPBilling_QuerySubscriptions()). This function will generate an

Asynchronous IAP Event where the async_load DS map “id” key holds the constant

gpb_product_data_response, as well as the key “json_response”. This key contains a JSON

object string, which – when decoded using json_decode() – will contain DS map. This map

will have the key “success” - which will be true if the query has been successfully processed,

and false otherwise – as well as the key “skuDetails” (only if “success” is true). The

“skuDetails” key will, in turn, hold a DS list ID where each entry into the list contains a DS map

ID with the details for each of the activated IAP products.

The DS map for each individual product will contain the following keys:

• “skuDetailsToken” – This is a unique token created by Google for the details

request.

• “productId” – The product ID (SKU, a string) as listed on the Google Play console for

the game.

• “type” – The IAP type for the product. Will be one of the following constants:

Constant Actual
Value

Description

gpb_purchase_skutype_inapp “inapp” This constant indicates that
the product is a consumable
purchase.

gpb_purchase_skutype_subs “subs” This constant indicates that
the product is a
subscription purchase.

• “price” – Returns formatted price of the item (a string), including its currency sign.

The price does not include tax.

• “price_amount_micros” – Returns the price in micro-units (an integer), where

1,000,000 micro-units equals one unit of the currency. For example, if the price is

“€7.99”, then the price in micros is “7990000”. This value represents the localised

and rounded price for a particular currency.

Cont…/

15 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_QueryProducts Cont…/

• “price_currency_code” – Returns the ISO 4217 currency code for the price and

original price (a string). For example, if the price is specified in British pounds

sterling, then the code returned would be “GBP”.

• “title” – Returns the title of the product (a string) as defined in the Google Play

console.

• “description” – Returns the product description (a string) as defined in the Google

Play console.

NOTE: You should NOT call this function at the same time as the equivalent subscription query,

as this may cause the Google API to error. Instead, call one function, and then in the

Asynchronous IAP Event callback, call the other function if you need to.

Syntax

GPBilling_QueryProducts();

Returns

 N/A

Extended Example

The following code is being called from the Asynchronous IAP Event when it has been

triggered by the function GPBilling_ConnectToStore().

var _eventId = async_load[? “id”];

switch (_eventId)

 {
 case gpb_store_connect:

 GPBilling_AddProduct(global.IAP_PurchaseID[0]);

 GPBilling_AddProduct(global.IAP_PurchaseID[1]);

 GPBilling_QueryProducts();

 break;

 }

Cont…/

https://www.xe.com/iso4217.php

16 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_QueryProducts Cont…/

The query products function will then trigger another call to the Asynchronous IAP Event,

which can be parsed by adding another case to the switch, this time checking the async_load

key “id” for the constant gpb_product_data_response. Something like this:

 case gpb_product_data_response:
 var _json = async_load[? “response_json”];
 var _map = json_decode(_json);
 if _map[? “success”] == true
 {
 var _plist = _map[? “skuDetails”];
 for (var i = 0; i < ds_list_size(_plist); ++i;)
 {
 var _pmap = _plist[| i];
 var _num = 0;
 while(_pmap[? “productId”] != global.IAP_PurchaseID[_num])
 {
 ++_num;
 }
 global.IAP_ProductData[_num, 0] = _pmap[? “price”];
 global.IAP_ProductData[_num, 1] = _pmap[? “title”];
 global.IAP_ProductData[_num, 2] = _pmap[? “description”];
 }
 GPBilling_QuerySubscriptions();
 }
 ds_map_destroy(_map);
 break;

Note that after parsing the returned product data, we then call the equivalent query function

for subscriptions, and then when that triggers another asynchronous callback we’d call the

function GPBilling_QueryPurchases() to check for any purchases that haven’t been

consumed.

17 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_QuerySubscriptions

Description

This function can be used to query the state of any subscription products (for consumables,

please use the function GPBilling_QueryProducts()). This function will generate an

Asynchronous IAP Event where the async_load DS map “id” key holds the constant

gpb_subscription_data_response, as well as the key “json_response”. This key contains a

JSON object string, which – when decoded using json_decode() – will contain DS map. This

map will have the key “success” - which will be true if the query has been successfully

processed, and false otherwise – as well as the key “skuDetails” (only if “success” is true).

The “skuDetails” key will, in turn, hold a DS list ID where each entry into the list contains a DS

map ID with the details for each of the activated IAP products.

The DS map for each individual product will contain the following keys:

• “skuDetailsToken” – This is a unique token created by Google for the details request.

• “productId” – The subscription product ID (SKU, a string) as listed on the Google Play

console for the game.

• “type” – The IAP type for the product. Will be one of the following constants:

Constant Actual
Value

Description

gpb_purchase_skutype_inapp “inapp” This constant indicates that
the product is a consumable
purchase.

gpb_purchase_skutype_subs “subs” This constant indicates that
the product is a
subscription purchase.

• “price” – Returns formatted price of the subscription (a string), including its currency

sign. The price does not include tax.

• “price_amount_micros” – Returns the price in micro-units (an integer), where

1,000,000 micro-units equals one unit of the currency. For example, if the price is

“€7.99”, then the price in micros is “7990000”. This value represents the localized,

rounded price for a particular currency.

Cont…/

18 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_QuerySubscriptions Cont…/

• “price_currency_code” – Returns the ISO 4217 currency code for the price and

original price (a string). For example, if the price is specified in British pounds

sterling, then the code returned would be “GBP”.

• “title” – Returns the title of the subscription product (a string) as defined in the

Google Play console.

• “description” – Returns the subscription product description (a string) as defined in

the Google Play console.

NOTE: You should NOT call this function at the same time as the equivalent products query, as

this may cause the Google API to error. Instead, call one function, and then in the Asynchronous

IAP Event callback, call the other function if you need to.

Syntax

GPBilling_QuerySubscriptions();

Returns

 N/A

Extended Example

The following code is being called from the Asynchronous IAP Event when it has been

triggered by the function GPBilling_ConnectToStore().

var _eventId = async_load[? “id”];

switch (_eventId)

 {
 case gpb_store_connect:

 GPBilling_AddSubscription(global.IAP_PurchaseID[0]);

 GPBilling_AddSubscription(global.IAP_PurchaseID[1]);

 GPBilling_QuerySubscriptions();

 break;

 }

Cont…/

https://www.xe.com/iso4217.php

19 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_QuerySubscriptions Cont…/

The query subscriptions function will then trigger another call to the Asynchronous IAP Event,

which can be parsed by adding another case to the switch, this time checking the async_load

key “id” for the constant gpb_subscription_data_response, something like this:

 case gpb_subscription_data_response:
 var _json = async_load[? “response_json”];
 var _map = json_decode(_json);
 if _map[? “success”] == true
 {
 var _plist = _map[? “skuDetails”];
 for (var i = 0; i < ds_list_size(_plist); ++i;)
 {
 var _pmap = _plist[| i];
 var _num = 0;
 while(_pmap[? “productId”] != global.IAP_PurchaseID[_num])
 {
 ++_num;
 }
 global.IAP_PurchaseData[_num, 0] = _pmap[? “price”];
 global.IAP_PurchaseData[_num, 1] = _pmap[? “title”];
 global.IAP_PurchaseData[_num, 2] = _pmap[? “description”];
 }
 GPBilling_QueryPurchases(gpb_purchase_skutype_inapp);
 }
 ds_map_destroy(_map);
 break;

Note that after parsing the returned subscription data, we then call the function

GPBilling_QueryPurchases() to check for any purchases that haven’t been consumed. If

you haven’t already queried consumable products, then you should probably do that first,

then in the corresponding Asynchronous IAP Event callback, you’d check the purchase status.

20 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_QueryPurchases

Description

This function is used for querying the purchase state of the different products available for

your game. This function should always be called before permitting any in-app purchases,

preferable near the startup of the game itself. The function takes one of the following

constants as the “type” argument:

Constant Actual
Value

Description

gpb_purchase_skutype_inapp “inapp” This constant indicates that
you are querying the purchase
state of consumable products.

gpb_purchase_skutype_subs “subs” This constant indicates that
you are querying the purchase
state of subscription
products.

Unlike some of the other Billing functions, this one does not generate a callback event, but

will instead immediately return a JSON string which can be decoded using the json_decode()

function. The initial JSON top-level DS map will have the following keys:

• “success” – This will be either true or false depending on whether the purchase

query succeeded or not.

If “success” is false, then there will be an additional key:

• “responseCode” – This is an integer value that corresponds to one of the Google

Play Store response codes listed here. Note that if a purchase has been cancelled,

you’ll get “success: false” and “responseCode:1”, for “USER_CANCELLED”.

If “success” is true, then the additional key will be:

• “purchases” – This is a DS list ID, where each entry in the list corresponds to a DS

map for an individual purchase.

When the “purchases” key exists, this can then be looped through (as shown in the extended

example below) to get the individual DS maps with the product and purchase information.

Each purchase map will contain the following keys:

• “orderId” - Returns a unique order identifier for the transaction (a string). This

identifier corresponds to the Google payments order ID.

• “packageName” - Returns the application package from which the purchase

originated (a string).

Cont…/

https://developer.android.com/reference/com/android/billingclient/api/BillingClient.BillingResponseCode

21 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_QueryPurchases Cont…/

• “productId” - Returns the product ID (SKU, a string).

• “purchaseTime” - Returns the time the product was purchased (an integer). This is in

milliseconds since the epoch (Jan 1, 1970).

• “purchaseState” - Returns the state of purchase (an integer). Possible values are:

▪ 0 – Un-Specified State

▪ 1 – Purchased

▪ 2 – Pending

• “purchaseToken” - Returns a token that uniquely identifies a purchase for a given

item and user pair (a string). This should be used for any server verification.

• “autoRenewing” - Indicates whether the subscription renews automatically

(boolean, will always be false for non-subscription purchases).

• “acknowledged” - The acknowledgement state of the in-app product. Possible

(integer) values are:

▪ 0 - Yet to be acknowledged

▪ 1 – Acknowledged

Purchases that have been made but not consumed will have a “purchaseState” of 1 for

purchased, while purchases that are in progress but not yet resolved will have a state of 2 for

pending.

Keep in mind that any NON-consumable purchases will also have the purchased state (1), as

the Google Billing API makes no distinction between consumable and non-consumable and

it’s up to you to decide when and if a purchase is consumed. However, all purchases must be

acknowledged within 2 days of purchase, even if they are not being consumed. This is done

automatically when a consumable is used, however for non-consumables this must be done

using the function GPBilling_AcknowledgePurchase(). If you do not acknowledge a

purchase within 2 days, it will be refunded.

Syntax

GPBilling_QueryPurchases(type);

Argument Description Data Type

type The type of product to be
queried.

Constant (see the
description above)

Cont…/

22 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_QueryPurchases Cont…/

Returns

 String (JSON)

Extended Example

For this example, we would first want to connect to the store, then add products and then

query the product status, before checking the purchase state of each product. So, for example,

we’d have a Create Event like this:

global.IAP_Enabled = false;

var _init = GPBilling_ConnectToStore();

if _init == gpb_error_unknown

 {

 show_debug_message(“ERROR - Billing API Has Not Connected!”);
 alarm[0] = room_speed * 10;

 }

Assuming the API has correctly requested a store connection, it will trigger an Asynchronous

IAP Event where you can check to see if the API has successfully connected to the Google Play

store or not, and then add each of the products that you want to be available to the user, and

then query the product details:

var _eventId = async_load[? "id"];

switch (_eventId)
 {

 case gpb_store_connect:

 global.IAP_Enabled = true;

 GooglePlayBilling_AddProduct(global.IAP_PurchaseID[0]);

 GooglePlayBilling_AddProduct(global.IAP_PurchaseID[1]);

 GPBilling_QueryProducts();

 break;
 }

The query products function will then trigger another Asynchronous IAP event, and we can

add another case to our switch statement where we can check the state of any purchases

from those that we’ve added, and consume or acknowledge any purchased product as

required:

Cont…/

23 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_QueryPurchases Cont…/

case gpb_product_data_response:

 if async_load[? “success”] == true
 {

 var _json = GPBilling_QueryPurchases();

 var _jsonmap = json_decode(_json);

 if _jsonmap[? “success”] == true

 {

 var _list = _jsonmap[? "purchases"];

 var _sz = ds_list_size(_list);

 for (var i = 0; i < _sz; ++i;)
 {

 var _map = _list[| i];

 if _map[? “purchaseState”] == 1

 {

 var _pid = _map[? “productId”];

 var _token = map[? “purchaseToken”];

 var _add = false;
 if _pid == global.IAP_PurchaseID[0]

 {

 GPBilling_ConsumeProduct(_token);

 _add = true;

 }

 else if _pid == global.IAP_PurchaseID[1]

 {
 if _map[? “acknowledged”] == 0

 {

 GPBilling_AcknowledgePurchase(_token);

 _add = true;

 }

 }

 if _add
 {

 ds_list_add(global.CurrentTokens, _token);

 ds_list_add(global.CurrentProduct, _pid);

 }

 }

 }

 }

 ds_map_destroy(_jsonmap);
 }

 break;

Note that we store the purchase tokens and product IDs of those products we consume or

acknowledge in global ds lists. This is done so that we can track the purchases correctly when

the consumed or acknowledged response comes back (see the functions

GPBilling_AcknowledgePurchase() and GPBilling_ConsumeProduct() for more details).

24 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_PurchaseProduct

Description

This function will send a purchase request to the Billing API and attempt to purchase the

product with the given ID. The ID value should be a string and is the product identifier name

on the Google Play console, for example “buy_100_gold”. The function will return one of the

constants listed below to indicate the initial status of the purchase request, and then an

Asynchronous IAP Event will be triggered with the callback.

The Async IAP Event callback will return the async_load DS map, which will contain an “id”

key with the constant gpb_iap_receipt for a purchase request, as well as the key

“response_json”, which will contain a JSON formatted string with the purchase data. This

JSON can then be decoded using the function json_decode() and parsed to retrieve the

different elements of the purchase data.

The decoded JSON will be a DS map with two keys: “success” – which will be true or false

depending on whether the purchase request was successful – and “purchases” (this will not

exist if the “success” key returns false). The value held in the “purchases” key will be a DS

list ID, where each list entry corresponds to an individual purchase DS map, so you should

iterate through the list and parse the map data from each entry.

The DS map for each individual purchase will contain the following keys:

• “orderId” - Returns a unique order identifier for the transaction (a string). This

identifier corresponds to the Google payments order ID.

• “packageName” - Returns the application package from which the purchase

originated (a string).

• “productId” - Returns the product ID (SKU, a string).

• “purchaseTime” - Returns the time the product was purchased (an integer). This is in

milliseconds since the epoch (Jan 1, 1970).

• “purchaseState” - Returns the state of purchase (an integer). Possible values are:

▪ 0 – Un-Specified State

▪ 1 – Purchased

▪ 2 – Pending

• “purchaseToken” - Returns a token that uniquely identifies a purchase for a given

item and user pair (a string). This should be used for any server verification.

Cont…/

25 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_PurchaseProduct Cont…/

• “autoRenewing” - Indicates whether the subscription renews automatically

(boolean, will always be false for non-subscription purchases).

• “acknowledged” - The acknowledgement state of the in-app product. Possible

values are:

▪ 0 - Yet to be acknowledged

▪ 1 – Acknowledged

Keep in mind that any NON-consumable purchases will also have the purchased state (1), as

the Google Billing API makes no distinction between consumable and non-consumable and

it’s up to you to decide when and if a purchase is consumed. However, all purchases must

be acknowledged within 2 days of purchase, even if they are not being consumed. This is

done automatically when a consumable is used, however for non-consumables this must be

done using the function GPBilling_AcknowledgePurchase(). If you do not acknowledge a

purchase within 2 days, it will be refunded.

Syntax

GPBilling_PurchaseProduct(product_id);

Argument Description Data Type

product_id The ID of the product as
shown on the Google Play
console.

String

Returns

 Constant

Constant Error
Code

Description

gpb_error_not_initialised 1 The Billing API has not
been initialised before
calling this function.

gpb_error_no_skus 2 There are no SKUs in the
product list nor the
subscription list.

gpb_error_selected_sku_list_empty 3 You have tried to
purchase a product when
there is no product in
the list (although there
may be subscriptions in
the list)

gpb_no_error 0 The Billing API has been
initialised correctly.

Cont…/

26 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_PurchaseProduct Cont…/

Extended Example

The following code would be used in (for example, but not limited to) a mouse pressed

event to purchase a product:

if GPBilling_StoreIsConnected()

 {
 var _chk = GPBilling_PurchaseProduct(global.IAP_PurchaseID[0]);

 if _chk != gpb_no_error
 {

 // Purchase unavailable, add failsafe code if required

 }
 }

You would then have something like the following code in the IAP Asynchronous Event to deal

with the purchase callback (note that the following code shows a simple purchase verification

scheme, however you should ideally verify the purchase with an http call to your server,

supplying the returned token string, and then consume the purchase when you receive

verification in the Asynchronous HTTP Event):

var _eventId = async_load[? "id"];
switch (eventId)
 {
 case gpb_iap_receipt:
 var _json = async_load[? "response_json"];
 var _map = json_decode(response_json);
 if _map[? “success”] == true
 {
 if ds_map_exists(_map, "purchases")
 {
 var _plist = ds_map_find_value(_map, "purchases");
 for (var i = 0; i < ds_list_size(purchases); ++i;)
 {
 var _pmap = _plist[| i];
 var _ptoken = _pmap[? "purchaseToken"];
 var _sig = GPBilling_Purchase_GetSignature(_ptoken);
 var _pjson = GPBilling_Purchase_GetOriginalJson(_ptoken);
 if GPBilling_Purchase_VerifySignature(_pjson, _sig)
 {
 GPBilling_ConsumeProduct(_ptoken);
 ds_list_add(global.CurrentTokens, _ptoken);
 ds_list_add(global.CurrentProducts, _pmap[? "productId"]);
 }
 }
 }
 }
 ds_map_destroy(_map);
 break;
 }

Note that we store the purchase tokens and product IDs of those products we consume or

acknowledge in global ds lists. This is done so that we can track the purchases correctly when

the consumed or acknowledged response comes back (see the functions

GPBilling_AcknowledgePurchase() and GPBilling_ConsumeProduct() for more details).

27 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_PurchaseSubscription

Description

This function will send a subscription purchase request to the Billing API and attempt to

subscribe to the product with the given ID. The ID value should be a string and is the

subscription identifier name on the Google Play console, for example “improved_version”.

The function will return one of the constants listed below to indicate the initial status of the

subscription request, and then an Asynchronous IAP Event will be triggered with the callback.

The Async IAP Event callback will return the async_load DS map, which will contain an “id”

key with the constant gpb_iap_receipt for a purchase request, as well as the key

“response_json”, which will contain a JSON formatted string with the purchase data. This

JSON can then be decoded using the function json_decode() and parsed to retrieve the

different elements of the purchase data.

The decoded JSON will be a DS map with two keys: “success” – which will be true or false

depending on whether the purchase request was successful – and “purchases” (this will not

exist if the “success” key returns false). The value held in the “purchases” key will be a DS

list ID, where each list entry corresponds to an individual purchase DS map, so you should

iterate through the list and parse the map data from each entry.

The DS map for each individual purchase will contain the following keys:

• “orderId” - Returns a unique order identifier for the transaction (a string). This

identifier corresponds to the Google payments order ID.

• “packageName” - Returns the application package from which the purchase

originated (a string).

• “productId” - Returns the subscription ID (SKU, a string).

• “purchaseTime” - Returns the time the subscription was purchased (an integer). This

is in milliseconds since the epoch (Jan 1, 1970).

• “purchaseState” - Returns the state of purchase (an integer). Possible values are:

▪ 0 – Un-Specified State

▪ 1 – Purchased

▪ 2 – Pending

• “purchaseToken” - Returns a token that uniquely identifies a subscription purchase

for a given item and user pair (a string). This should be used for any server

verification.

Cont…/

28 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_PurchaseSubscription Cont…/

• “autoRenewing” - Indicates whether the subscription renews automatically

(boolean, will always be false for non-subscription purchases).

• “acknowledged” - The acknowledgement state of the subscription. Possible values

are:

▪ 0 - Yet to be acknowledged

▪ 1 – Acknowledged

Keep in mind that all subscription purchases must be acknowledged within 2 days of

purchase, using the function GPBilling_AcknowledgePurchase(). If you do not

acknowledge a purchase within 2 days, it will be refunded. Also note that after the initial

purchase, the subscription will be renewed automatically by Google, and all you have to do is

query the subscription state each time the game starts to unlock or block any additional

content as required.

IMPORTANT! Setting up and using subscriptions requires an external server to be able to

communicate with your app and with the Google Play servers for verification and other

purposes. This is outside of the scope of this documentation and instead we refer you to the

following documents:

o Google Developer Docs: Add Subscription-Specific Features

o Google Developer Docs: Verify A Purchase On A Server

Syntax

GPBilling_PurchaseSubscription(product_id);

Argument Description Data Type

product_id The ID of the product as
shown on the Google Play
console.

String

Cont…/

https://developer.android.com/google/play/billing/billing_subscriptions
https://developer.android.com/google/play/billing/billing_library_overview#Verify-purchase

29 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_PurchaseSubscription Cont…/

Returns

 Constant

Constant Error
Code

Description

gpb_error_not_initialised 1 The Billing API has not
been initialised before
calling this function.

gpb_error_no_skus 2 There are no SKUs in the
product list or
subscription list.

gpb_error_selected_sku_list_empty 3 You have tried to
purchase a subscription
when there is no
subscription in the list
(although there may be
products in the list)

gpb_no_error 0 The Billing API has been
initialised correctly.

Extended Example

The following code would be used in (for example, but not limited to) a mouse pressed

event to purchase a product:

if GPBilling_StoreIsConnected()
 {

 var _chk = GPBilling_PurchaseSubscription(global.IAP_PurchaseID[0]);
 if _chk != gpb_no_error

 {
 // Purchase unavailable, add failsafe code if required

 }
 }

You would then have something like the following code in the IAP Asynchronous Event to

deal with the purchase callback (note that the following code shows a simple purchase

verification scheme, however you should ideally verify the purchase with an http call to your

server, supplying the returned token string, and then consume the purchase only when you

receive verification in the Asynchronous HTTP Event):

Cont…/

30 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_PurchaseSubscription Cont…/

var _eventId = async_load[? "id"];
switch (eventId)
 {
 case gpb_iap_receipt:
 var _json = async_load[? "response_json"];
 var _map = json_decode(response_json);
 if _map[? “success”] == true
 {
 if ds_map_exists(_map, "purchases")
 {
 var _plist = ds_map_find_value(_map, "purchases");
 for (var i = 0; i < ds_list_size(purchases); ++i;)
 {
 var _pmap = _plist[| i];
 var _ptoken = _pmap[? "purchaseToken"];
 var _sig = GPBilling_Purchase_GetSignature(_ptoken);
 ds_list_add(global.CurrentTokens, _ptoken);
 ds_list_addglobal.CurrentProduct, _pmap[? “productId”]);
 // SERVER VERIFICATION CODE HERE
 // Here you would send the token and signature to
 // your servers for verification with the Google
 // Play API and then return the result, which would
 // then be received in an Asynchronous HTTP event.
 // Once received, the subscription can then
 // be acknowledged, and content/bonuses etc…
 // can be unlocked in your game
 }
 }
 }
 ds_map_destroy(_map);
 break;
 }

Note that we store the purchase tokens and product IDs of those products we consume or

acknowledge in global ds lists. This is done so that we can track the purchases correctly when

the consumed or acknowledged response comes back (see the functions

GPBilling_AcknowledgePurchase() and GPBilling_ConsumeProduct() for more details).

31 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_AcknowledgePurchase

Description

This function will acknowledge a purchase or subscription. When you receive notification that

a purchase has been made, it needs to be acknowledged with the Google servers within 2 days

otherwise it is refunded. This is done automatically for consumable purchases when you call

the function GPBilling_ConsumeProduct(), but for non-consumable and subscriptions, you

must call this function to let Google know the purchase has been received correctly.

On calling the function initially, it will return one of the constants listed below to inform you

of the request status, and if this is gpb_no_error then an Asynchronous IAP Event will be

triggered where the async_load DS map will have the key “id” which will correspond to the

extension constant gpb_acknowledge_purchase_response. Additionally, the map will have

the key “response_json” which will be a JSON string that can be converted into a DS map using

the json_decode() function.

The decoded JSON will be a DS map which will have a key “responseCode”, which can be

checked before proceeding to deal with the acknowledgement response. This key will have

one of the following integer values:

• -3 – The request has reached the maximum timeout before Google Play responds

• -2 – Requested feature is not supported by Play Store on the current device.

• -1 – The Play Store service is not connected currently

• 0 – Success

• 1 – User has cancelled the action

• 2 – Network connection is down

• 4 – Requested product is not available for purchase

• 6 – Fatal error during the API action

• 7 – Failure to purchase since item is already owned

• 8 – Failure to consume since item is not owned

Syntax

GPBilling_AcknowledgePurchase(purchase_token);

Argument Description Data Type

purchase_token The unique string token
for the purchase being
acknowledged.

String

Cont…/

32 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_AcknowledgePurchase Cont…/

Returns

 Constant

Constant Actual
Value

Description

gpb_error_unknown -1 There was an unknown error
preventing the Billing API
from creating an
acknowledgment request.

gpb_no_error 0 The Billing API has created
an acknowledgment request
correctly.

Example

This example shows how you’d deal with the callback in the Asynchronous IAP event for an

acknowledged product (for an example of when the GPBilling_AcknowledgePurchase()

function should be called, see the Extended Example for the function

GPBilling_PurchaseSubscription()):

var _eventId = async_load[? "id"];

switch (eventId)

 {

 case gpb_acknowledge_purchase_response:

 var _map = json_decode(async_load[? “response_json”]);

 var _num = -1;

 if map[? “responseCode”] == 0
 {

 var _sz = ds_list_size(global.CurrentProducts);

 for (var i = 0; i < _sz; ++i;)

 {

 if global.CurrentProducts[| i] == global.IAP_ProductID[0]

 {

 global.NoAds = true;
 _num = i;

 break;

 }

 // Add further checks for other products here…

 }

 if _num > -1

 {
 ds_list_delete(global.CurrentProducts, _num);

 ds_list_delete(global.CurrentTokens, _num);

 }

 }

 else

 {

 // Parse the other response codes here
 // and react appropriately

 }

 ds_map_destroy(_map);

 break;

 }

33 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_ConsumeProduct

Description

This function will consume a purchase. When you receive notification that a purchase has

been made, it needs to be consumed or acknowledged with the Google servers within 2 days

otherwise it is refunded. Consumable purchases are acknowledged automatically when you

call this function, but for non-consumable and subscription purchases, see the function

GPBilling_AcknowledgePurchase().

On calling the function initially, it will return one of the constants listed below to inform you

of the request status, and if this is gpb_no_error then an Asynchronous IAP Event will be

triggered where the async_load DS map will have the key “id” which will correspond to the

extension constant gpb_product_consume_response. Additionally, the map will have the

key “response_json” which will be a JSON string that can be converted into a DS map using

the json_decode() function.

The decoded JSON will be a DS map which will have either the key “responseCode” (if there is

an error) or the key “purchaseToken“, which will be the purchase token string of the

consumed product.

If you have the “responseCode” key, then it can be checked for one of the following integer

values:

• -3 – The request has reached the maximum timeout before Google Play responds

• -2 – Requested feature is not supported by Play Store on the current device.

• -1 – The Play Store service is not connected currently

• 0 – Success

• 1 – User has cancelled the action

• 2 – Network connection is down

• 4 – Requested product is not available for purchase

• 6 – Fatal error during the API action

• 7 – Failure to purchase since item is already owned

• 8 – Failure to consume since item is not owned

Syntax

GPBilling_ConsumeProduct(purchase_token);

Argument Description Data Type

purchase_token The unique string token
for the purchase being
acknowledged.

String

Cont…/

34 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_ConsumeProduct Cont…/

Returns

 Constant

Constant Actual
Value

Description

gpb_error_unknown -1 There was an unknown error
preventing the Billing API
from creating a consume
request.

gpb_no_error 0 The Billing API has created a
consume request correctly.

Example

This example shows how you’d deal with the callback in the Asynchronous IAP event for a

consumed product (for an example of when the GPBilling_ConsumeProduct() function

should be called, see the Extended Example for the function

GPBilling_PurchaseProduct()):

var _eventId = async_load[? "id"];

switch (eventId)

 {

 case gpb_product_consume_response:
 var _map = json_decode(async_load[? “response_json”]);

 var _num = -1;

 if ds_map_exists(_map, “purchaseToken”)

 {

 for (var i = 0; i < ds_list_size(global.CurrentTokens); ++i;)
 {

 if _map[? “purchaseToken”] == global.CurrentTokens[| i]

 {

 if global.CurrentProducts[| i] == global.IAP_ProductID[0]

 {

 global.Gold += 500;

 _num = i;

 break;
 }

 // Check any other products here…

 }

 }

 if _num > -1

 {

 ds_list_delete(global.CurrentProducts, _num);
 ds_list_delete(global.CurrentTokens, _num);

 }

 }

 else

 {

 // Parse the error response codes here

 // and react appropriately
 }

 ds_map_destroy(_map);

 break;

 }

35 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Sku_GetDescription

Description

This function will return the descriptive text as defined on the Google Play Developer Console

for the given SKU (product ID). You supply the product ID as a string, and the function will

return a string with the description. Note that this function requires you to have called

GPBilling_QueryProducts() or GPBilling_QuerySubscriptions() first, but once those

have returned their respective Async callbacks, this function can be used anywhere in your

game code to retrieve the required information.

Syntax

GPBilling_Sku_GetDescription(sku);

Argument Description Data Type

sku The unique SKU ID of the
product.

String

Returns

 String

Example

The following code would be called in the Draw Event of an object used to display the

information for a given IAP product:

var _name = GPBilling_Sku_GetTitle(global.IAP_PurchaseID[0]);

var _desc = GPBilling_Sku_GetDescription(global.IAP_PurchaseID[0]);

var _price = GPBilling_Sku_GetPrice(global.IAP_PurchaseID[0]);
draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, _price);

36 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Sku_GetFreeTrialPeriod

Description

This function will return the Trial Period as defined on the Google Play Developer Console for

the given SKU (product ID). You supply the product ID as a string, and the function will return

a string in ISO 8601 format, for example “P7D” which would equate to seven days. Note that

this function requires you to have called GPBilling_QueryProducts() or

GPBilling_QuerySubscriptions() first, but once those have returned their respective

Async callbacks, this function can be used anywhere in your game code to retrieve the

required information.

IMPORTANT! This function is only valid for subscriptions which have a trial period

configured.

Syntax

GPBilling_Sku_GetFreeTrialPeriod(sku);

Argument Description Data Type

sku The unique SKU ID of the
product.

String

Returns

 N/A

Example

The following code would be called in the Draw Event of an object used to display the

information for a given IAP product:

var _name = GPBilling_Sku_GetTitle(global.IAP_PurchaseID[0]);

var _desc = GPBilling_Sku_GetDescription(global.IAP_PurchaseID[0]);

var _period = GPBilling_Sku_GetFreeTrialPeriod(global.IAP_PurchaseID[0]);
var _days = string_digits(_period);

draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, “Trial Period: “ + _days + “ days”);

https://en.wikipedia.org/wiki/ISO_8601

37 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Sku_GetIconUrl

Description

This function will return the URL for the icon of the given SKU (product ID) as created on the

Google Play Developer Console. You supply the product ID as a string, and the function will

return a string with the URL. You can then use the sprite_add() function to retrieve this image

(which will trigger an Asynchronous Image Loaded Event) and then display it in your game.

Note that this function requires you to have called GPBilling_QueryProducts() or

GPBilling_QuerySubscriptions() first, but once those have returned their respective

Async callbacks, this function can be used anywhere in your game code to retrieve the

required information.

Syntax

GPBilling_Sku_GetIconUrl(sku);

Argument Description Data Type

sku The unique SKU ID of the
product.

String

Returns

 String

Extended Example

In this example, we first call the function to get the URL of the icon for a product (probably in

an Asynchronous IAP event, after querying the product details):

var _url = GPBilling_Sku_GetIconUrl(global.IAP_PurchaseID[0]);
iap_sprite = sprite_add(_url, 0, false, false, 0, 0);

This will trigger an Asynchronous Image Loaded event where you can then store the

returned image for drawing:

if ds_map_find_value(async_load, "id") == iap_sprite

 {

 if ds_map_find_value(async_load, "status") >= 0

 {

 sprite_index = iap_sprite;

 }
 }

38 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Sku_GetIntroductoryPrice

Description

This function will return the introductory price as defined on the Google Play Developer

Console for the given SKU (product ID). You supply the product ID as a string, and the function

will return a formatted string with the price that includes the currency sign, for example

“€3.99”. Note that this function requires you to have called GPBilling_QueryProducts() or

GPBilling_QuerySubscriptions() first, but once those have returned their respective

Async callbacks, this function can be used anywhere in your game code to retrieve the

required information.

IMPORTANT! This function is only valid for subscriptions which have an introductory

period configured.

Syntax

GPBilling_Sku_GetIntroductoryPrice(sku);

Argument Description Data Type

sku The unique SKU ID of the
product.

String

Returns

 String

Example

The following code would be called in the Draw Event of an object used to display the

information for a given IAP product:

var _name = GPBilling_Sku_GetTitle(global.IAP_PurchaseID[0]);

var _desc = GPBilling_Sku_GetDescription(global.IAP_PurchaseID[0]);

var _price = GPBilling_Sku_GetIntroductoryPrice(global.IAP_PurchaseID[0]);
draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, _price);

39 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Sku_GetIntroductoryPriceAmountMicros

Description

This function will return the introductory price as defined on the Google Play Developer

Console for the given SKU (product ID) in micros, where 1,000,000 micros equals one unit of

the currency. You supply the product ID as a string, and the function will return an integer

value for the price in micros, for example 7990000 (which would be 7.99 in currency). Note

that this function requires you to have called GPBilling_QueryProducts() or

GPBilling_QuerySubscriptions() first, but once those have returned their respective

Async callbacks, this function can be used anywhere in your game code to retrieve the

required information.

IMPORTANT! This function is only valid for subscriptions which have an introductory

period configured.

Syntax

GPBilling_Sku_GetIntroductoryPriceAmountMicros(sku);

Argument Description Data Type

sku The unique SKU ID of the
product.

String

Returns

 Integer

Example

The following code would be called in the Draw Event of an object used to display the

information for a given IAP product:

var _name = GPBilling_Sku_GetTitle(global.IAP_PurchaseID[0]);

var _desc = GPBilling_Sku_GetDescription(global.IAP_PurchaseID[0]);

var _m = GPBilling_Sku_GetIntroductoryPriceAmountMicros(global.IAP_PurchaseID[0]);

var _c = GPBilling_Sku_GetPriceCurrencyCode(global.IAP_PurchaseID[0]);

var _val = string(_m / 1000000);
var _symbol = “”;

switch (_c)

 {

 case “GBP”: _symbol = “£”; break;

 case “JPY”: _symbol = “¥”; break;

 case “EUR”: _symbol = “€”; break;

 }
draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, _symbol + _val);

40 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Sku_GetIntroductoryPriceCycles

Description

This function will return the introductory price cycles as defined on the Google Play Developer

Console for the given SKU (product ID). You supply the product ID as a string, and the function

will return a string of the value for the number of billing cycles that the user will pay the

introductory price for, for example “3”. Note that this function requires you to have called

GPBilling_QueryProducts() or GPBilling_QuerySubscriptions() first, but once those

have returned their respective Async callbacks, this function can be used anywhere in your

game code to retrieve the required information.

IMPORTANT! This function is only valid for subscriptions which have an introductory

period configured.

Syntax

GPBilling_Sku_GetIntroductoryPriceCycles(sku);

Argument Description Data Type

sku The unique SKU ID of the
product.

String

Returns

 String

Example

The following code would be called in the Draw Event of an object used to display the

information for a given IAP product:

var _name = GPBilling_Sku_GetTitle(global.IAP_PurchaseID[0]);
var _desc = GPBilling_Sku_GetDescription(global.IAP_PurchaseID[0]);

var _price = GPBilling_Sku_GetIntroductoryPrice(global.IAP_PurchaseID[0]);

var _cycles = GPBilling_Sku_GetIntroductoryPriceCycles(global.IAP_PurchaseID[0]);
draw_set_halign(fa_center);

draw_text(x, y + 32, _name);
draw_text(x, y + 48, _desc);

draw_text(x, y + 64, _price)

draw_text(x, y + 80, “for “ + _cycles + “ months”);

41 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Sku_GetIntroductoryPricePeriod

Description

This function will return the introductory price period as defined on the Google Play Developer

Console for the given SKU (product ID). You supply the product ID as a string, and the function

will return a string in ISO 8601 format, for example “P7D” would equate to seven days. Note

that this function requires you to have called GPBilling_QueryProducts() or

GPBilling_QuerySubscriptions() first, but once those have returned their respective

Async callbacks, this function can be used anywhere in your game code to retrieve the

required information.

IMPORTANT! This function is only valid for subscriptions which have an introductory

period configured.

Syntax

GPBilling_Sku_GetIntroductoryPricePeriod(sku);

Argument Description Data Type

sku The unique SKU ID of the
product.

String

Returns

 String

Example

The following code would be called in the Draw Event of an object used to display the

information for a given IAP product:

var _name = GPBilling_Sku_GetTitle(global.IAP_PurchaseID[0]);

var _desc = GPBilling_Sku_GetDescription(global.IAP_PurchaseID[0]);

var _period = GPBilling_Sku_GetIntroductoryPricePeriod(global.IAP_PurchaseID[0]);

var _days = string_digits(_period);

draw_set_halign(fa_center);
draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, “Offer Lasts For “ + _days + “ days!”);

https://en.wikipedia.org/wiki/ISO_8601

42 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Sku_GetOriginalJson

Description

This function will return the original JSON corresponding to the given SKU (product ID),

containing all the details about the product. You supply the product ID as a string, and the

function will return a JSON string that can be decoded into a DS map using the json_decode()

function. The map contents will correspond to the details listed in the Google Billing

documentation (see here for more information). Note that this function requires you to have

called GPBilling_QueryProducts() or GPBilling_QuerySubscriptions() first, but once

those have returned their respective Async callbacks, this function can be used anywhere in

your game code to retrieve the required information.

Syntax

GPBilling_Sku_GetOriginalJson(sku);

Argument Description Data Type

sku The unique SKU ID of the
product.

String

Returns

 String

Example

The following code can be called after querying a product to retrieve all the information about

it without calling the individual SKU functions:

var _json = GPBilling_Sku_GetOriginalJson(global.IAP_PurchaseID[0]);

var _map = json_decode(_json);
global.IAP_PurchaseData[0, 0] = _map[? “price”];
global.IAP_PurchaseData[0, 1] = _map[? “title”];

global.IAP_PurchaseData[0, 2] = _map[? “decription”];

ds_map_destroy(_map);

https://developer.android.com/reference/com/android/billingclient/api/SkuDetails.html

43 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Sku_GetOriginalPrice

Description

This function will return the original price as defined on the Google Play Developer Console

for the given SKU (product ID), where the original price is the price of the item before any

applicable sales have been applied. You supply the product ID as a string, and the function will

return a formatted string with the price that includes the currency sign, for example “€3.99”.

Note that this function requires you to have called GPBilling_QueryProducts() or

GPBilling_QuerySubscriptions() first, but once those have returned their respective

Async callbacks, this function can be used anywhere in your game code to retrieve the

required information.

Syntax

GPBilling_Sku_GetOriginalPrice(sku);

Argument Description Data Type

sku The unique SKU ID of the
product.

String

Returns

 String

Example

The following code would be called in the Draw Event of an object used to display the

information for a given IAP product:

var _name = GPBilling_Sku_GetTitle(global.IAP_PurchaseID[0]);

var _desc = GPBilling_Sku_GetDescription(global.IAP_PurchaseID[0]);

var _price = GPBilling_Sku_GetOriginalPrice(global.IAP_PurchaseID[0]);
draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);
draw_text(x, y + 64, _price);

44 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Sku_GetOriginalPriceAmountMicros

Description

This function will return the original price as defined on the Google Play Developer Console

for the given SKU (product ID) in micros, where 1,000,000 micros equals one unit of the

currency. The original price is defined as the price of the item before any applicable sales have

been applied, and the value represents the localized, rounded price for a particular currency.

You supply the product ID as a string, and the function will return an integer value for the price

in micros, for example 7990000 (which would be 7.99 in currency). Note that this function

requires you to have called GPBilling_QueryProducts() or

GPBilling_QuerySubscriptions() first, but once those have returned their respective

Async callbacks, this function can be used anywhere in your game code to retrieve the

required information.

Syntax

GPBilling_Sku_GetOriginalPriceAmountMicros(sku);

Argument Description Data Type

sku The unique SKU ID of the
product.

String

Returns

 Integer

Example

The following code would be called in the Draw Event of an object used to display the

information for a given IAP product:

var _name = GPBilling_Sku_GetTitle(global.IAP_PurchaseID[0]);

var _desc = GPBilling_Sku_GetDescription(global.IAP_PurchaseID[0]);

var _m = GPBilling_Sku_GetOriginalPriceAmountMicros(global.IAP_PurchaseID[0]);
var _c = GPBilling_Sku_GetPriceCurrencyCode(global.IAP_PurchaseID[0]);

var _val = string(_m / 1000000);

var _symbol = “”;

switch (_c)

 {

 case “GBP”: _symbol = “£”; break;

 case “JPY”: _symbol = “¥”; break;
 case “EUR”: _symbol = “€”; break;

 }

draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, _symbol + _val);

45 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Sku_GetPrice

Description

This function will return the current price as defined on the Google Play Developer Console

for the given SKU (product ID). You supply the product ID as a string, and the function will

return a formatted string with the price that includes the currency sign, for example “€3.99”.

Note that this function requires you to have called GPBilling_QueryProducts() or

GPBilling_QuerySubscriptions() first, but once those have returned their respective

Async callbacks, this function can be used anywhere in your game code to retrieve the

required information.

Syntax

GPBilling_Sku_GetPrice(sku);

Argument Description Data Type

sku The unique SKU ID of the
product.

String

Returns

 String

Example

The following code would be called in the Draw Event of an object used to display the

information for a given IAP product:

var _name = GPBilling_Sku_GetTitle(global.IAP_PurchaseID[0]);

var _desc = GPBilling_Sku_GetDescription(global.IAP_PurchaseID[0]);

var _price = GPBilling_Sku_GetPrice(global.IAP_PurchaseID[0]);
draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, _price);

46 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Sku_GetPriceAmountMicros

Description

This function will return the current price as defined on the Google Play Developer Console

for the given SKU (product ID) in micros, where 1,000,000 micros equals one unit of the

currency, and the value represents the localized, rounded price for a particular currency. You

supply the product ID as a string, and the function will return an integer value for the price in

micros, for example 7990000 (which would be 7.99 in currency). Note that this function

requires you to have called GPBilling_QueryProducts() or

GPBilling_QuerySubscriptions() first, but once those have returned their respective

Async callbacks, this function can be used anywhere in your game code to retrieve the

required information.

Syntax

GPBilling_Sku_GetPriceAmountMicros(sku);

Argument Description Data Type

sku The unique SKU ID of the
product.

String

Returns

 String

Example

The following code would be called in the Draw Event of an object used to display the

information for a given IAP product:

var _name = GPBilling_Sku_GetTitle(global.IAP_PurchaseID[0]);

var _desc = GPBilling_Sku_GetDescription(global.IAP_PurchaseID[0]);

var _m = GPBilling_Sku_GetPriceAmountMicros(global.IAP_PurchaseID[0]);

var _c = GPBilling_Sku_GetPriceCurrencyCode(global.IAP_PurchaseID[0]);

var _val = string(_m / 1000000);
var _symbol = “”;

switch (_c)

 {

 case “GBP”: _symbol = “£”; break;

 case “JPY”: _symbol = “¥”; break;

 case “EUR”: _symbol = “€”; break;

 }
draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, _symbol + _val);

47 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Sku_GetPriceCurrencyCode

Description

This function will return the currency code for the given SKU (product ID). You supply the

product ID as a string, and the function will return a string in ISO 4217 format, for example

“EUR” would equate the Euro currency. Note that this function requires you to have called

GPBilling_QueryProducts() or GPBilling_QuerySubscriptions() first, but once those

have returned their respective Async callbacks, this function can be used anywhere in your

game code to retrieve the required information.

Syntax

GPBilling_Sku_GetPriceCurrencyCode(sku);

Argument Description Data Type

sku The unique SKU ID of the
product.

String

Returns

 String

Example

The following code would be called in the Draw Event of an object used to display the

information for a given IAP product:

var _name = GPBilling_Sku_GetTitle(global.IAP_PurchaseID[0]);

var _desc = GPBilling_Sku_GetDescription(global.IAP_PurchaseID[0]);

var _m = GPBilling_Sku_GetPriceAmountMicros(global.IAP_PurchaseID[0]);

var _c = GPBilling_Sku_GetPriceCurrencyCode(global.IAP_PurchaseID[0]);

var _val = string(_m / 1000000);

var _symbol = “”;

switch (_c)
 {

 case “GBP”: _symbol = “£”; break;

 case “JPY”: _symbol = “¥”; break;

 case “EUR”: _symbol = “€”; break;

 }

draw_set_halign(fa_center);

draw_text(x, y + 32, _name);
draw_text(x, y + 48, _desc);

draw_text(x, y + 64, _symbol + _val);

https://en.wikipedia.org/wiki/ISO_4217

48 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Sku_GetSubscriptionPeriod

Description

This function will return the subscription renewal period as defined on the Google Play

Developer Console for the given SKU (product ID). You supply the product ID as a string, and

the function will return a string in ISO 8601 format, for example “P7D” would equate to seven

days. Note that this function requires you to have called GPBilling_QueryProducts() or

GPBilling_QuerySubscriptions() first, but once those have returned their respective

Async callbacks, this function can be used anywhere in your game code to retrieve the

required information.

IMPORTANT! This function is only valid for subscription IAPs.

Syntax

GPBilling_Sku_GetSubscriptionPeriod(sku);

Argument Description Data Type

sku The unique SKU ID of the
product.

String

Returns

 String

Example

The following code would be called in the Draw Event of an object used to display the

information for a given IAP product:

var _name = GPBilling_Sku_GetTitle(global.IAP_PurchaseID[0]);

var _desc = GPBilling_Sku_GetDescription(global.IAP_PurchaseID[0]);
var _period = GPBilling_Sku_GetSubscriptionPeriod(global.IAP_PurchaseID[0]);

var _days = string_digits(_period);

draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, “Renewal Period: “ + _days + “ days”);

https://en.wikipedia.org/wiki/ISO_8601

49 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Sku_GetTitle

Description

This function will return the title of a given SKU (product ID) as defined on the Google Play

Developer Console. You supply the product ID as a string, and the function will return a string

with the product title. Note that this function requires you to have called

GPBilling_QueryProducts() or GPBilling_QuerySubscriptions() first, but once those

have returned their respective Async callbacks, this function can be used anywhere in your

game code to retrieve the required information.

Syntax

GPBilling_Sku_GetTitle(sku);

Argument Description Data Type

sku The unique SKU ID of the
product.

String

Returns

 String

Example

The following code would be called in the Draw Event of an object used to display the

information for a given IAP product:

var _name = GPBilling_Sku_GetTitle(global.IAP_PurchaseID[0]);

var _desc = GPBilling_Sku_GetDescription(global.IAP_PurchaseID[0]);

var _price = GPBilling_Sku_GetPrice(global.IAP_PurchaseID[0]);
draw_set_halign(fa_center);

draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, _price);

50 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Sku_GetType

Description

This function will return the in-app purchase type of a given SKU (product ID) as defined on

the Google Play Developer Console. You supply the product ID as a string, and the function

will return a constant with the IAP product type (see below). Note that this function requires

you to have called GPBilling_QueryProducts() or GPBilling_QuerySubscriptions()

first, but once those have returned their respective Async callbacks, this function can be used

anywhere in your game code to retrieve the required information.

Syntax

GPBilling_Sku_GetType(sku);

Argument Description Data Type

sku The unique SKU ID of the
product.

String

Returns

 Constant

Constant Actual
Value

Description

gpb_purchase_skutype_inapp “inapp” The product is a
consumable IAP

gpb_purchase_skutype_subs “subs” The product is a
subscription IAP.

Example

The following code would be called in the Draw Event of an object used to display the

information for a given IAP product:

var _name = GPBilling_Sku_GetTitle(global.IAP_PurchaseID[0]);
var _desc = GPBilling_Sku_GetDescription(global.IAP_PurchaseID[0]);

var _price = GPBilling_Sku_GetPrice(global.IAP_PurchaseID[0]);
draw_set_halign(fa_center);
draw_text(x, y + 32, _name);

draw_text(x, y + 48, _desc);

draw_text(x, y + 64, _price);

if GPBilling_Sku_GetType(global.IAP_PurchaseID[0]) == gpb_purchase_skutype_subs

 {

 draw_text(x, y + 80, “Subscription!”);

 }

51 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Purchase_GetState

Description

This function can be used to check the current state of a product purchase. You supply the

unique purchase token (as a string), and the function will return one of the constants listed

below to indicate the current state of the purchase.

Syntax

GPBilling_Purchase_GetState(purchase_token);

Argument Description Data Type

purchase_token The purchase token for the
purchase to check.

String

Returns

 Constant

Constant Actual
Value

Description

gpb_purchase_state_pending 3002 The purchase is still
pending

gpb_purchase_state_purchased 3001 The purchase has been
completed

gpb_purchase_state_unspecified 3000 The API can’t retrieve
the purchase status for
some reason

gpb_error_unknown -1 There is an unknown
issue with the Billing
API (possible connection
issue)

gpb_error_not_initialised 1 The Billing API has not
initialised correctly.

Example

if GPBilling_Purchase_GetState(global.CurrentToken) == gpb_purchase_state_purchased

 {

 sprite_index = spr_IconConsume;

 }

52 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Purchase_GetSignature

Description

This function will return a string containing the signature of the purchase data that was signed

with the private key of the developer. If the function fails, then an empty string “” will be

returned.

Syntax

GPBilling_Purchase_GetSignature(purchase_token);

Argument Description Data Type

purchase_token The purchase token for the
purchase to check.

String

Returns

 String

Example

for (var i = 0; i < ds_list_size(global.CurrentTokens); ++i;)

 {
 var _sig = GPBilling_Purchase_GetSignature(global.CurrentTokens[i]);

 var _json = GPBilling_Purchase_GetOriginalJson(global.CurrentTokens[i]);

 if GPBilling_Purchase_VerifySignature(_json, _sig)

 {

 GPBilling_ConsumeProduct(global.CurrentTokens[| i]);

 }

 }

53 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Purchase_VerifySignature

Description

This function can be used to verify a purchase before consuming or acknowledging it. You

supply a JSON string plus the unique signature for a purchase. You can retrieve these details

using the GPBilling_Purchase_GetSignature() and GPBilling_Purchase_GetOriginalJson()

functions, and the function will return true if the purchase can be verified, or false

otherwise.

Warning! This form of verification isn't truly secure because it requires you to bundle

purchase verification logic within your app. This logic becomes compromised if your

app is reverse engineered. Instead we recommend that you create your own server to

verify any product purchases.

Syntax

GPBilling_Purchase_VerifySignature(original_json, signature);

Argument Description Data Type

original_json The original JSON related
to the purchase being
verified

String

signature The unique signature used
to verify the purchase

String

Returns

 Boolean

Example

for (var i = 0; i < ds_list_size(global.CurrentTokens); ++i;)

 {

 var _sig = GPBilling_Purchase_GetSignature(global.CurrentTokens[i]);
 var _json = GPBilling_Purchase_GetOriginalJson(global.CurrentTokens[i]);

 if GPBilling_Purchase_VerifySignature(_json, _sig)

 {

 GPBilling_ConsumeProduct(global.CurrentTokens[| i]);

 }

 }

54 Contents

© Copyright YoYo Games Ltd. 2019 All Rights Reserved

GPBilling_Purchase_GetOriginalJson

Description

This function will return the original JSON string related to a purchase. You supply the unique

purchase token (a string) and the function will return a JSON object string that can be decoded

into a DS map using the json_decode() function. This map will contain all the details about

the given purchase. If the function fails, then an empty string “” will be returned.

Syntax

GPBilling_Purchase_GetOriginalJson(purchase_token);

Argument Description Data Type

purchase_token The purchase token for the
purchase to check.

String

Returns

 String

Example

for (var i = 0; i < ds_list_size(global.CurrentTokens); ++i;)

 {

 var _sig = GPBilling_Purchase_GetSignature(global.CurrentTokens[i]);

 var _json = GPBilling_Purchase_GetOriginalJson(global.CurrentTokens[i]);

 if GPBilling_Purchase_VerifySignature(_json, _sig)

 {
 GPBilling_ConsumeProduct(global.CurrentTokens[| i]);

 }

 }

